载入中...  
载入中...
时 间 记 忆
载入中...
最 新 评 论
载入中...
专 题 分 类
载入中...
最 新 日 志
载入中...
最 新 留 言
载入中...
搜 索
用 户 登 录
载入中...
友 情 连 接
博 客 信 息
载入中...


 
人工智能革命:人类将永生或者灭绝(连载二)
[ 2015-3-10 9:13:00 | By: alice ]
 

一、通往超级智能之路

人工智能是什么?

如果你一直以来把人工智能(AI)当做科幻小说,但是近来却不但听到很多正经人严肃的讨论这个问题,你可能也会困惑。这种困惑是有原因的:

1.我们总是把人工智能和电影想到一起。星球大战、终结者、2001:太空漫游等等。电影是虚构的,那些电影角色也是虚构的,所以我们总是觉得人工智能缺乏真实感。

2.人工智能是个很宽泛的话题。从手机上的计算器到无人驾驶汽车,到未来可能改变世界的重大变革,人工智能可以用来描述很多东西,所以人们会有疑惑。

3.我们日常生活中已经每天都在使用人工智能了,只是我们没意识到而已。John McCarthy,在1956年最早使用了人工智能(Artificial Intelligence)这个词。他总是抱怨“一旦一样东西用人工智能实现了,人们就不再叫它人工智能了。”

所以,让我们从头开始。

首先,不要一提到人工智能就想着机器人。机器人只是人工智能的容器,机器人有时候是人形,有时候不是,但是人工智能自身只是机器人体内的电脑。人工智能是大脑的话,机器人就是身体——而且这个身体不一定是必需的。比如说Siri背后的软件和数据是人工智能,Siri说话的声音是这个人工智能的人格化体现,但是Siri本身并没有机器人这个组成部分。

其次,你可能听过“奇点”或者“技术奇点”这种说法。这种说法在数学上用来描述类似渐进的情况,这种情况下通常的规律就不适用了。这种说法同样被用在物理上来描述无限小的高密度黑洞,同样是通常的规律不适用的情况。Kurzweil则把奇点定义为加速回报定律达到了极限,技术进步以近乎无限的速度发展,而奇点之后我们将在一个完全不同的世界生活的。但是当下的很多思考人工智能的人已经不再用奇点这个说法了,而且这种说法很容易把人弄混,所以本文也尽量少用。

最后,人工智能的概念很宽,所以人工智能也分很多种,我们按照人工智能的实力将其分成三大类。

弱人工智能Artificial Narrow Intelligence (ANI): 弱人工智能是擅长于单个方面的人工智能。比如有能战胜象棋世界冠军的人工智能,但是它只会下象棋,你要问它怎样更好地在硬盘上储存数据,它就不知道怎么回答你了。

强人工智能Artificial General Intelligence (AGI): 人类级别的人工智能。强人工智能是指在各方面都能和人类比肩的人工智能,人类能干的脑力活它都能干。创造强人工智能比创造弱人工智能难得多,我们现在还做不到。Linda Gottfredson教授把智能定义为“一种宽泛的心理能力,能够进行思考、计划、解决问题、抽象思维、理解复杂理念、快速学习和从经验中学习等操作。”强人工智能在进行这些操作时应该和人类一样得心应手。

超人工智能Artificial Superintelligence (ASI): 牛津哲学家,知名人工智能思想家Nick Bostrom把超级智能定义为“在几乎所有领域都比最聪明的人类大脑都聪明很多,包括科学创新、通识和社交技能。”超人工智能可以是各方面都比人类强一点,也可以是各方面都比人类强万亿倍的。超人工智能也正是为什么人工智能这个话题这么火热的缘故,同样也是为什么永生和灭绝这两个词会在本文中多次出现。

现在,人类已经掌握了弱人工智能。其实弱人工智能无处不在,人工智能革命是从弱人工智能,通过强人工智能,最终到达超人工智能的旅途。这段旅途中人类可能会生还下来,可能不会,但是无论如何,世界将变得完全不一样。

让我们来看看这个领域的思想家对于这个旅途是怎么看的,以及为什么人工智能革命可能比你想的要近得多。

我们现在的位置——充满了弱人工智能的世界

弱人工智能是在特定领域等同或者超过人类智能/效率的机器智能,一些常见的例子:

现在的弱人工智能系统并不吓人。最糟糕的情况,无非是代码没写好,程序出故障,造成了单独的灾难,比如造成停电、核电站故障、金融市场崩盘等等。

虽然现在的弱人工智能没有威胁我们生存的能力,我们还是要怀着警惕的观点看待正在变得更加庞大和复杂的弱人工智能的生态。每一个弱人工智能的创新,都在给通往强人工智能和超人工智能的旅途添砖加瓦。用Aaron Saenz的观点,现在的弱人工智能,就是地球早期软泥中的氨基酸——没有动静的物质,突然之间就组成了生命。

二、弱人工智能到强人工智能之路

为什么这条路很难走

只有明白创造一个人类智能水平的电脑是多么不容易,才能让你真的理解人类的智能是多么不可思议。造摩天大楼、把人送入太空、明白宇宙大爆炸的细节——这些都比理解人类的大脑,并且创造个类似的东西要简单太多了。至今为止,人类的大脑是我们所知宇宙中最复杂的东西。

而且创造强人工智能的难处,并不是你本能认为的那些。

造一个能在瞬间算出十位数乘法的计算机——非常简单

造一个能分辨出一个动物是猫还是狗的计算机——极端困难

造一个能战胜世界象棋冠军的电脑——早就成功了

造一个能够读懂六岁小朋友的图片书中的文字,并且了解那些词汇意思的电脑——谷歌花了几十亿美元在做,还没做出来。

一些我们觉得困难的事情——微积分、金融市场策略、翻译等,对于电脑来说都太简单了

我们觉得容易的事情——视觉、动态、移动、直觉——对电脑来说太TM的难了。

用计算机科学家Donald Knuth的说法,“人工智能已经在几乎所有需要思考的领域超过了人类,但是在那些人类和其它动物不需要思考就能完成的事情上,还差得很远。”

读者应该能很快意识到,那些对我们来说很简单的事情,其实是很复杂的,它们看上去很简单,因为它们已经在动物进化的过程中经历了几亿年的优化了。当你举手拿一件东西的时候,你肩膀、手肘、手腕里的肌肉、肌腱和骨头,瞬间就进行了一组复杂的物理运作,这一切还配合着你的眼睛的运作,使得你的手能都在三维空间中进行直线运作。对你来说这一切轻而易举,因为在你脑中负责处理这些的“软件”已经很完美了。同样的,软件很难识别网站的验证码,不是因为软件太蠢,恰恰相反,是因为能够读懂验证码是件碉堡了的事情。

同样的,大数相乘、下棋等等,对于生物来说是很新的技能,我们还没有几亿年的世界来进化这些能力,所以电脑很轻易的就击败了我们。试想一下,如果让你写一个程序,是一个能做大数相乘的程序容易写,还是能够识别千千万万种字体和笔迹下书写的英文字母的程序难写?

比如看着下面这个图的时候,你和电脑都能识别出这是一个由两种颜色的小长方形组成的一个大长方形。

你和电脑打了个平手。接着我们把途中的黑色部分去除:

而且,我们到现在谈的还是静态不变的信息。要想达到人类级别的智能,电脑必须要理解更高深的东西,比如微小的脸部表情变化,开心、放松、满足、满意、高兴这些类似情绪间的区别,以及为什么《布达佩斯大饭店》是好电影,而《富春山居图》是烂电影。

想想就很难吧?

我们要怎样才能达到这样的水平呢?

通往强人工智能的第一步:增加电脑处理速度

要达到强人工智能,肯定要满足的就是电脑硬件的运算能力。如果一个人工智能要像人脑一般聪明,它至少要能达到人脑的运算能力。

用来描述运算能力的单位叫作cps(calculations per second,每秒计算次数),要计算人脑的cps只要了解人脑中所有结构的最高cps,然后加起来就行了。

Kurzweil把对于一个结构的最大cps的专业估算,然后考虑这个结构占整个大脑的重量,做乘法,来得出人脑的cps。听起来不太靠谱,但是Kurzweil用了对于不同大脑区域的专业估算值,得出的最终结果都非常类似,是10^16 cps,也就是1亿亿次计算每秒。

现在最快的超级计算机,中国的天河二号,其实已经超过这个运算力了,天河每秒能进行3.4亿亿。当然,天河二号占地720平方米,耗电2400万瓦,耗费了3.9亿美元建造。广泛应用就不提了,即使是大部分商业或者工业运用也是很贵的。

Kurzweil认为考虑电脑的发展程度的标杆是看1000美元能买到多少cps,当1000美元能买到人脑级别的1亿亿运算能力的时候,强人工智能可能就是生活的一部分了。

摩尔定律认为全世界的电脑运算能力每两年就翻一倍,这一定律有历史数据所支持,这同样表明电脑硬件的发展和人类发展一样是指数级别的。我们用这个定律来衡量1000美元什么时候能买到1亿亿cps。现在1000美元能买到10万亿cps,和摩尔定律的历史预测相符合。


也就是说现在1000美元能买到的电脑已经强过了老鼠,并且达到了人脑千分之一的水平。听起来还是弱爆了,但是,让我们考虑一下,1985年的时候,同样的钱只能买到人脑万亿分之一的cps,1995年变成了十亿分之一,2005年是百万分之一,而2015年已经是千分之一了。按照这个速度,我们到2025年就能花1000美元买到可以和人脑运算速度抗衡的电脑了。

至少在硬件上,我们已经能够强人工智能了(中国的天河二号),而且十年以内,我们就能以低廉的价格买到能够支持强人工智能的电脑硬件。

但是运算能力并不能让电脑变得智能,下一个问题是,我们怎样利用这份运算能力来达成人类水平的智能。

 
  • 标签:永生、灭绝 
  • 专题:人工智能 
  • 发表评论:
    载入中...
    @Oblog科学与宗教研究